Secciones
Foros Electrónica
Boletines de correo
Boletines
background image

IRF840, SiHF840

www.vishay.com

Vishay Siliconix

 

S16-0754-Rev. D, 02-May-16

1

Document Number: 91070

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

Power MOSFET

FEATURES

 Dynamic dV/dt rating

 Repetitive avalanche rated

 Fast switching

 Ease of paralleling

 Simple drive requirements

 Material categorization: for definitions of compliance 

please see 

www.vishay.com/doc?99912

Note

*

This    datasheet    provides    information    about    parts    that    are

RoHS-compliant and / or parts that are non-RoHS-compliant.  For

example, parts with lead (Pb) terminations are not RoHS-compliant.

Please see the information / tables in this datasheet for details.

DESCRIPTION

Third generation power MOSFETs from Vishay provide the 
designer with the best combination of fast switching, 
ruggedized device design, low on-resistance and 
cost-effectiveness. 

The TO-220AB package is universally preferred for all 
commercial-industrial applications at power dissipation 
levels to approximately 50 W. The low thermal resistance 
and low package cost of the TO-220AB contribute to its 
wide acceptance throughout the industry.

Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. V

DD

 = 50 V, starting T

J

 = 25 C, L = 14 mH, R

g

 = 25 

Ω, I

AS

 = 8.0 A (see fig. 12).

c. I

SD

 

 8.0 A, dI/dt  100 A/μs, V

DD

 

 V

DS

, T

J

 

 150 C.

d. 1.6 mm from case.

PRODUCT SUMMARY

V

DS

 (V)

500

R

DS(on)

 (

Ω)

V

GS

 = 10 V 

0.85

Q

g

 max. (nC)

63

Q

gs

 (nC)

9.3

Q

gd

 (nC)

32

Configuration

Single

N-Channel MOSFET

G

D

S

TO-220AB

G

D

S

Available

Available

ORDERING INFORMATION

Package

TO-220AB

Lead (Pb)-free

IRF840PbF

SiHF840-E3 

SnPb

IRF840

SiHF840

ABSOLUTE MAXIMUM RATINGS (T

C

 = 25  C, unless otherwise noted)

PARAMETER SYMBOL

LIMIT

UNIT

Drain-Source Voltage 

V

DS

500

V

Gate-Source Voltage

V

GS

   

20  V 

Continuous Drain Current

V

GS

 at 10 V

T

C

 = 25 C 

I

D

8.0

A

T

C

 = 100 C 

5.1

Pulsed Drain Current

 a

I

DM

 32

Linear Derating Factor

1.0

W/ C 

Single Pulse Avalanche Energy 

b

E

AS 

510

mJ 

Repetitive Avalanche Current 

a

I

AR 

8.0

Repetitive Avalanche Energy

 a

E

AR

13

mJ 

Maximum Power Dissipation

T

C

 = 25 C 

P

D

125

Peak Diode Recovery dV/dt 

c

dV/dt 3.5

V/ns 

Operating Junction and Storage Temperature Range

T

J

, T

stg

-55 to +150 

Soldering Recommendations (Peak temperature) 

d

for 10 s

300

Mounting Torque

6-32 or M3 screw

10 lbf 

 

in

1.1

N  m

background image

IRF840, SiHF840

www.vishay.com

Vishay Siliconix

 

S16-0754-Rev. D, 02-May-16

2

Document Number: 91070

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width 

 300 μs; duty cycle  2 %.

THERMAL RESISTANCE RATINGS

PARAMETER SYMBOL

TYP.

MAX.

UNIT

Maximum Junction-to-Ambient

R

thJA

-

62

C/W

Case-to-Sink, Flat, Greased Surface

R

thCS

0.50

-

Maximum Junction-to-Case (Drain)

R

thJC

-

1.0

SPECIFICATIONS (T

J

 = 25 C, unless otherwise noted)

PARAMETER SYMBOL

TEST 

CONDITIONS 

MIN.

TYP.

MAX.

UNIT

Static

Drain-Source Breakdown Voltage 

V

DS 

V

GS

 = 0 V, I

D

 = 250 μA 

500

-

-

V

DS

 Temperature Coefficient 

V

DS

/T

J

 

Reference to 25  C, I

D

 = 1 mA 

-

0.78

-

V/ C 

Gate-Source Threshold Voltage 

V

GS(th)

V

DS

 = V

GS

, I

D

 = 250 μA 

2.0

-

4.0

Gate-Source Leakage 

I

GSS

 

V

GS

 = 20 V

-

-

 100

nA 

Zero Gate Voltage Drain Current 

I

DSS 

V

DS

 = 500 V, V

GS

 = 0 V 

-

-

25

μA 

V

DS

 = 400 V, V

GS

 = 0 V, T

J

 = 125 C 

-

-

250

Drain-Source On-State Resistance 

R

DS(on)

 

V

GS

 = 10 V

I

D

 = 4.8 A

 b

-

-

0.85

Forward Transconductance 

g

fs 

V

DS

 = 50 V, I

D

 = 4.8 A

 b

4.9

-

-

Dynamic

Input Capacitance 

C

iss 

V

GS

 = 0 V,

V

DS

 = 25 V,

f = 1.0 MHz, see fig. 5 

-

1300

-

pF

Output Capacitance 

C

oss

 

-

310

-

Reverse Transfer Capacitance 

C

rss

 

-

120

-

Total Gate Charge 

Q

g

 

V

GS

 = 10 V 

I

D

 = 8 A, V

DS

 = 400 V,

see fig. 6 and 13

 b

-

-

63

nC 

Gate-Source Charge 

Q

gs

 

-

-

9.3

Gate-Drain Charge

Q

gd

 

-

-

32

Turn-On Delay Time 

t

d(on)

 

V

DD

 = 250 V, I

D

 = 8 A 

R

g

 = 9.1 

Ω, R

D

 = 31

Ω, see fig. 10

 b

-

14

-

ns

Rise Time

t

-

23

-

Turn-Off Delay Time 

t

d(off)

 

-

49

-

Fall Time 

t

f

 

-

20

-

Internal Drain Inductance 

L

Between lead,

6 mm (0.25") from 
package and center of 
die contact 

-

4.5

-

nH 

Internal Source Inductance

L

S

-

7.5

-

Gate Input Resistance 

R

g

f = 1 MHz, open drain

0.6

-

2.8

Drain-Source Body Diode Characteristics

Continuous Source-Drain Diode Current 

I

S

MOSFET symbol
showing the 

integral reverse

p - n junction diode

-

-

8.0

A

Pulsed Diode Forward Current

 a

I

SM

-

-

32

Body Diode Voltage

V

SD

T

J

 = 25  C, I

S

 = 8 A, V

GS

 = 0 V

 b

-

-

2.0

V

Body Diode Reverse Recovery Time

t

rr

T

J

 = 25 C, I

F

 = 8 A, dI/dt = 100 A/μs

 b

-

460

970

ns

Body Diode Reverse Recovery Charge

Q

rr

-

4.2

8.9

μC

Forward Turn-On Time

t

on

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

 and L

D

)

D

S

G

S

D

G

background image

IRF840, SiHF840

www.vishay.com

Vishay Siliconix

 

S16-0754-Rev. D, 02-May-16

3

Document Number: 91070

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

TYPICAL CHARACTERISTICS (25 C, unless otherwise noted)

 Fig. 1 - Typical Output Characteristics, T

C

 = 25 C

 Fig. 2 - Typical Output Characteristics, T

C

 = 150 C

 Fig. 3 - Typical Transfer Characteristics

 Fig. 4 -  Normalized On-Resistance vs. Temperature

 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

 Fig. 6 - Typical Gate Charge vs. Drain-to-Source Voltage

91070_01

V

DS

, Drain-to-Source Voltage (V)

I

D

, Dr

ain Current (A)

10

1

10

0

10

0

10

1

Bottom

Top

V

GS

 

15 V

 10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
4.5 V

20 s Pulse Width
T

C

 = 

25 C

4.5 V

91070_02

10

1

10

0

10

0

10

1

I

D

, Dr

ain Current (A)

4.5 V

Bottom

Top

V

GS

15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
4.5 V

20 s Pulse Width
T

C

 = 

150 C

V

DS,

 Drain-to-Source Voltage (V)

91070_03

25 

C

150 

C

20 s Pulse Width
V

DS

 = 

50 V

10

1

10

0

I

D

, Dr

ain Current (A)

V

GS,

 Gate-to-Source Voltage (V)

5

6

7

8

9

10

4

91070_04

3.0

0.0

0.5

1.0

1.5

2.0

2.5

- 60 - 40 - 20

0

20

40

60 80 100 120 140 160

T

J,

 Junction Temperature ( C)

R

DS(on)

, Dr

ain-to-Source On Resistance

(Nor

maliz

ed)

I

D

 = 8.0 A

V

GS

 = 10 V

91070_05

2500

2000

1500

1000

0

500

10

0

10

1

Capacitance (pF)

V

DS,

 Drain-to-Source Voltage (V)

C

iss

C

rss

C

oss

V

GS 

= 0 V, f = 1 MHz

C

iss

 = C

gs

 + C

gd

, C

ds

 Shorted

C

rss

 = C

gd

C

oss

 = C

ds

 + C

gd

91070_06

Q

G

, Total Gate Charge (nC)

V

GS

, Gate-to-Source 

V

o

ltage (V)

20

16

12

8

0

4

0

15

75

60

45

30

I

D

 = 8.0 A

For test circuit
see figure 13

V

DS

 = 250 V

V

DS

 = 100 V

V

DS

 = 400 V

background image

IRF840, SiHF840

www.vishay.com

Vishay Siliconix

 

S16-0754-Rev. D, 02-May-16

4

Document Number: 91070

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

 Fig. 7 - Typical Source-Drain Diode Forward Voltage

 Fig. 8 - Maximum Safe Operating Area

 Fig. 9 - Maximum Drain Current vs. Case Temperature

 Fig. 10a - Switching Time Test Circuit

 Fig. 10b - Switching Time Waveforms

 Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

91070_07

10

1

10

0

V

SD

, Source-to-Drain Voltage (V)

I

SD

, Re

v

e

rse Dr

ain Current (A)

0.4

1.0

0.8

0.6

25 

C

150 

C

V

GS

 

= 0 V

1.4

1.2

91070_08

10 

s

100 

s

ms

10 

ms

T

C

 = 25  C

T

J

 = 150  C

Single Pulse

V

DS

, Drain-to-Source Voltage (V)

I

D

, Dr

ain Current (A)

10

2

0.1

2

5

2

1

5

10

2

5

2

5

1

2

5

10

2

5

10

2

2

5

10

3

2

5

10

4

0.1

Operation in this area limited

by R

DS(on)

91070_09

I

D

, Dr

ain Current (A)

T

C

, Case Temperature ( C)

0.0

2.0

4.0

6.0

8.0

25

150

125

100

75

50

Pulse width 

≤ 1 s

Duty factor 

≤ 0.1 % 

R

D

V

GS

R

G

D.U.T.

10 V

+

-

V

DS

V

DD

V

DS

90 %

10 %

V

GS

t

d(on)

t

r

t

d(off)

t

f

- 0.5

0.2

0.1
0.05

0.02
0.01

Single Pulse
(Thermal Response)

P

DM

t

1

t

2

Notes:
1.  Duty Factor, D = t

1

/t

2

2.  Peak T

j

 = P

DM

 x Z

thJC

 + T

C

Ther

mal Response (Z

th

JC

)

10

-5

10

-4

10

-3

10

-2

0.1

1

10

10

2

10

1

0.1

10

-3

10

-2

background image

IRF840, SiHF840

www.vishay.com

Vishay Siliconix

 

S16-0754-Rev. D, 02-May-16

5

Document Number: 91070

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

 Fig. 12a - Unclamped Inductive Test Circuit

 Fig. 12b - Unclamped Inductive Waveforms

 Fig. 12c - Maximum Avalanche Energy vs. Drain Current

 Fig. 13a - Basic Gate Charge Waveform

 Fig. 13b - Gate Charge Test Circuit

R

G

I

AS

0.01 

t

p

D.U.T.

L

V

DS

+

-

V

DD

10 V

Vary t

p

 to obtain

required I

AS

I

AS

V

DS

V

DD

V

DS

t

p

91070_12c

Bottom

Top

I

D

3.6 A
5.1 A
8.0 A

V

DD

 = 50 V

1200

0

200

400

600

800

1000

25

150

125

100

75

50

Starting T

J

, Junction Temperature ( C)

E

AS

, Single Pulse Energy (mJ)

Q

GS

Q

GD

Q

G

V

G

Charge

10 V

D.U.T.

3 mA

V

GS

V

DS

I

G

I

D

0.3  F

0.2  F

50 k

12 V

Current regulator

Current sampling resistors

Same type as D.U.T.

+

-

background image

IRF840, SiHF840

www.vishay.com

Vishay Siliconix

 

S16-0754-Rev. D, 02-May-16

6

Document Number: 91070

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

 Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon 
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and 
reliability data, see 

www.vishay.com/ppg?91070

.

P.W.

Period

dI/dt

Diode recovery

dV/dt

Ripple ≤ 5 %

Body diode forward drop

Re-applied
voltage

Reverse
recovery
current

Body diode forward

current

V

GS

 = 10 V 

a

  

V

DD

I

SD

Driver gate drive

D.U.T. I

SD 

waveform

D.U.T. V

DS

waveform

Inductor current

D = 

P.W.

Period

+

-

+

+

+

-

-

-

Note 
a. V

GS

 = 5 V for logic level devices

Peak Diode Recovery dV/dt Test Circuit

V

DD

 dV/dt controlled by R

g

  Driver same type as D.U.T.
  I

SD 

controlled by duty factor D

  D.U.T. - device under test

D.U.T.

Circuit layout considerations
      Low stray inductance

   Ground plane
    Low leakage inductance 

current transformer

R

g

background image

Package Information

www.vishay.com

Vishay Siliconix

 

 

Revison: 14-Dec-15

1

Document Number: 66542

For technical questions, contact: 

hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT 

www.vishay.com/doc?91000

TO-220-1

Note

 M* = 0.052 inches to 0.064 inches (dimension including

protrusion), heatsink hole for HVM

M

*

3

2

1

L

L(1)

D

H(1)

Q

Ø P

A

F

J(1)

b(1)

e(1)

e

E

b

C

DIM.

MILLIMETERS

INCHES

MIN.

MAX.

MIN.

MAX.

A

4.24

4.65

0.167

0.183

b

0.69

1.02

0.027

0.040

b(1)

1.14

1.78

0.045

0.070

c

0.36

0.61

0.014

0.024

D

14.33

15.85

0.564

0.624

E

9.96

10.52

0.392

0.414

e

2.41

2.67

0.095

0.105

e(1)

4.88

5.28

0.192

0.208

F

1.14

1.40

0.045

0.055

H(1)

6.10

6.71

0.240

0.264

J(1)

2.41

2.92

0.095

0.115

L

13.36

14.40

0.526

0.567

L(1)

3.33

4.04

0.131

0.159

Ø P

3.53

3.94

0.139

0.155

Q

2.54

3.00

0.100

0.118

ECN: X15-0364-Rev. C, 14-Dec-15
DWG: 6031

Package Picture

ASE

Xian

background image

Legal Disclaimer Notice

www.vishay.com

Vishay

 

Revision: 13-Jun-16

1

Document Number: 91000

Disclaimer


ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE 
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. 

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, 
Vishay), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other 
disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or 
the continuing production of any product.  To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all 
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, 
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular 
purpose, non-infringement and merchantability. 

Statements regarding the suitability of products for certain types of applications are based on Vishays knowledge of 
typical requirements that are often placed on Vishay products in generic applications.  Such statements are not binding 
statements about the suitability of products for a particular application.  It is the customers responsibility to validate that a 
particular product with the properties described in the product specification is suitable for use in a particular application. 
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over 
time.  All operating parameters, including typical parameters, must be validated for each customer application by the customers 
technical experts.  Product specifications do not expand or otherwise modify Vishays terms and conditions of purchase, 
including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining 
applications or for any other application in which the failure of the Vishay product could result in personal injury or death. 
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. 
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for 
such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document 
or by any conduct of Vishay.  Product names and markings noted herein may be trademarks of their respective owners.


powered by phppowered by MySQLPOWERED BY APACHEPOWERED BY CentOS© 2004 - 2025Información Legalpoliticas de cookiesipv6 ready